

Lowell Regional Wastewater 451 First Street Boulevard Lowell, MA 01854 Attn: Aaron Fox

August 6, 2019

Dear Mr. Fox,

Enclosed please find the toxicological evaluation and chemical analyses report for the effluent sample received on July 8th, 2019. This is your third quarter 2019 bioassay. Please call me at (401) 353-3420 if you have any questions.

Sincerely,

Michael McCallum Technical Laboratory Director

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill St., West Warwick, RI 02893 (401) 353-3420 TOXICOLOGICAL EVALUATION AND CHEMICAL ANALYSES OF EFFLUENT: NPDES Permit # MA0100633 Third Quarter 2019 Samples Lowell

> Prepared For: Lowell Regional Wastewater 451 First Street Boulevard Lowell, MA 01854

> > August 6, 2019

By New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893

NETLAB CASE NUMBER: 9G08023

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

77 Batson Drive Manchester, CT 06042 T: 860.643.9560 F: 860.646.7169 www.nebio.com

NEW ENGLAND BIOASSAY A DIVISION OF GZA CHRONIC AQUATIC TOXICITY TEST REPORT

Permitee:	Lo	well RWWU			NPDES#	MAC	100633_	
Report submitted to:	New England	d Testing Labo	ratorie	es	5 <u>-</u> 2			
= 9	59 Greenhill S	Street, West W	/arwicl	k RI				
Sample ID:		Effluent			e E			
Test Month/Year:		July 2019		4				
NEB Proj #	05	.0044476.00						
Test Type / Method:	Ceriodaphnia du Test Method 10				tatic-Ren	ewal	Freshwater	
Effluent Sample Dates:				-10/1	9#3_	7	/11-12/19	
Test Start	Date:	7/9	9/19					
	F	Results Summ	ary					
Your results were as foll Passed all permit limits	ows:							
	A	cute Test Resi	ults					
Species	LC50	A-NOE	c	Pern	nit Limit		Pass / Fail	
Ceriodaphnia dubia	>100%	100%		≥	100%		Pass	
	Ch	ronic Test Res	ults					
Species	C-NOEC	C-LOEC	IC	25	Permit L	imit	Pass/Fail	
Ceriodaphnia dubia	100%	>100%	>10	0%	N/A		N/A	
Data Qualifiers affecting	this test:	*						

Certifications & Approvals: NH ELAP (2071), NJ DEP (CT405)

This report shall not be reproduced, except in its entirety, without approval of NEB. NEB is the sole authority for authorizing edits or modifications to the data contained in this report. NEB holds no responsibility for results and/or data that are not consistent with the original. Please contact the Lab Manager, Kimberly Wills, at 860-858-3153 or kimberly.wills@gza.com if you have questions concerning these results.

Test Report Certification

Permittee name:	Lowell RWWU	Permit number:	MA0100633
Client sample ID:	Effluent	Test Start Date:	7/9/19

Whole Effluent Toxicity Test Report Certification (Permittee)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:		
	(Date)	Authorized Signature
		Print or Type Name and Title
		Print or Type the Permittee's Name
		MA0100633
		Print or Type the NPDES Permit Number

Whole Effluent Toxicity Test Report Certification (Bioassay Laboratory)

The results reported relate only to the samples submitted as received

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:

Kimberly Wills

Laboratory Manager

New England Bioassay a division of GZA

General Test Conditions

Permittee name	me Lowell RWWU Permit number: MA0100633										
Client sample ID	Effluent	Test	Start Date:	7/9/1	9						
	Sample Collection	on Information									
9	0/19 @ 0700-0700 12/19 @ 0700-0700 es collected? Yes	No □*(see note	2 Date/Time:3 Date/Time:	7/10/19 @ 7/12/19 @	0930 0930						
	Test Con	ditions									
Permittee's Receiving Water: Modern Pollution water: Laboratory syntems • Control water: Receiving water Effluent concentrations tested: Was effluent salinity adjusted? Dechlorination procedures: Chlorination was not required. TRC results and further information TRC results TRC	nthetic soft water (hardnoollected at a point immow, 6.25%, 12.5%, 25%, No Yes with the water was well as measured using 4 with which was a second or with the water was a second or water with the water was a second with the water was a second water water was a second was	nediately upstream of 50%, 100% th Instant Ocean sea 500 CL-G DPD Colori	of or away from a salts to	ppt							
新聞 医压制的形式形式	Reference To	xicant Data									
	Ceriodaphi	nia dubia									
	Date:	7/1/19	ĸ								
	Toxicant:	Sodium chloride	i								
	Dilution Water:	NEB CTRMH									
	Organism Source:	1.05 g/L									
	Results within range	Yes 🗸 No 🗆	i.								

	Ceriodaphnia dubia Test Results													
Permittee nam	e:	Lowell RV	VWU	F	Permit number:	MA0100633								
Client sample II	D:	Effluent		Test Dates:	7/9/19	- 7/17/19								
		Test A	cceptability C	riteria		===								
Lab Diluent Survi	val:		ab Diluent Repr	oduction:		ing per female								
River Control Sur	vival:	<u>90</u> % Mean Ri	iver Control Re	production:		ing per female								
Thiosulfate Control Survival: N/A % Mean Thiosulfate Control Reproduction: N/A young per female														
Presence of an as the bottom of th		ndicates EPA criteria wa ; page.	s not met, see	explanation ir	n the "Results Disc	cussion" section at								
			Test Results											
			Permit Limit	Test Result	Pass/Fail Status	2								
	Acuto	48 hr LC50	≥ 100%	>100%	Pass									
	Acute Data	48 hr NOEC		100%										
	Dutu	TUa	D. A. Killer	S PARK TEM										
		Chronic LC50	5 m (3)	>100%										
		Survival C-NOEC		100%										
		Survival C-LOEC	FOR BUSINESS	>100%										

100%

>100%

>100%

>100%

100%

>100%

>100%

Presence of an asterisk (*) indicates qualified data, see explanation in the "Results Discussion" section at the bottom of the following page.

Reproduction C-NOEC

Reproduction C-LOEC

Reproduction IC25

Reproduction IC50
Reportable C-NOEC

Reportable C-LOEC

MATC

TUc

Chronic

Data

Test Variability
Reproduction PMSD: 38.4% Upper & Lower EPA bounds: 13 - 47% Low Within bounds High
PMSD exceeds upper bounds. Test results are highly variable and may not be sensitive enough to determine
the presence of toxicity at the permit limit concentration (PLC)
The PMSD falls within the upper (47%) and lower (13%) bounds. Results are reportable.
PMSD falls below the lower bound test variability criterion. The test is very sensitive. The relative percent
difference (RPD) between the control and each treatment was calculated and compared to the lower bound.
The RPD values for all concentrations fall below the lower bound. Any differences observed in this test are considered statistically insignificant.
Some of the concentrations that were flagged as statistically significant have RPD values that fall below the lower bound. Any differences observed in these concentrations will not be considered statistically significantly decreased from the control.
☐ No statistically significant reductions were observed in this test.

Ceriodaphnia dubia Test Results

Permittee name:	Lowell RWWU	Pe	MA0100633		
Client sample ID:	Effluent	Test Dates:	7/9/19	7/17/19	
	Concentration - Resp	onse Evaluation			
	nificant effects at any test concentra ntrations performed very similarly t		centration-respo	onse curve.	
, -	nificant effects at any test concentra concentrations performed both ab		•	· ·	
The concentration - responsible Survival Reproduct	nse relationship was reviewed and t	he following determ	ination was ma	de:	
X X	Results are reliable and repor	table			
	•	explanation below)			
	Results are inconclusive - rete		pelow)		
	Results Discussion (if applicable):			

TEST METHODS

Ceriodaphnia dubia

Test type: Modified Chronic Static Renewal Freshwater Test

Test Reference Manual: EPA-821-R-02-013 "Short-Term Methods for Estimating the Chronic Toxicity of

Effluents and Receiving Water to Freshwater Organisms"

Test Method: Ceriodaphnia dubia Survival and Reproduction Test - EPA 1002.0

Temperature: 25 °C \pm 1°C (Temperatures should not deviate by more than 3°C during the test)

(required)

Light Quality: Ambient Laboratory Illumination (recommended)

Light Intensity: 10-20 μE/m2/s, or 50-100 ft-c (recommended)

Photoperiod: 16 hours light, 8 hours dark (recommended)

Test chamber size: 30 mL (recommended minimum)

Test solution volume: 15 mL (recommended minimum)

Renewal of Test Solutions: Daily (required)

Age of Test Organisms: Less than 24 hours; and all released within a 8-h period (required)

Number of Neonates

Per Test Chamber: 1 Assigned using blocking by known parentage (required)

Number of Replicate Test

Chambers Per Treatment: 10 (required minimum)

Number of Neonates Per

Test Concentration: 10 (required minimum)

Feeding Regime: Fed 0.1 mL each of YCT and algal suspension per exposure chamber daily.

(recommended)

Cleaning: Use new plastic cups daily (recommended)

Aeration: None (recommended)

Test Duration: Until 60% or more of control females have three broods

(maximum test duration 8 days) (required)

Endpoints: Survival and reproduction (required)

Test Acceptability: 80% or greater survival of all control organisms and an average of 15 or more

young per surviving female in the control solutions. 60% of surviving control

females must produce three broods. (required)

Sampling Requirements: Minimum of three samples with a maximum holding time of 36 hours before

first use. (required)

Sample volume required: 1 L/Day (recommended)

CERIODAPHNIA DUBIA DATASHEETS & STATISTICAL ANALYSIS

NEW ENGLAND BIOASSAY TOXICITY DATA FORM CHRONIC COVER SHEET

	Chki	ONIC COVER SHE	:E1				
CLIENT: Ne	ew England Testing Labora	atories	C.dubia TEST ID	# 19-886			
		<u> </u>					
		93					
PERMITTEE:							
a——			J				
		<u> </u>					
ADDRESS: 59 Greenhill Street							
TEST SET	-UP TECHNICIAN:	СН					
	TEST SPECIES: Ce	eriodaphnia dubia					
	NEB LOT #	Cd19 (RMH 142)					
	AGE:	< 24 hours					
TEST SOLUTION	N VOLUME (mls):	15					
ORGANISMS PER	TEST CHAMBER:	1					
ORGANISMS PER C	ONCENTRATION:	10					
	LABORATO	ORY CONTROL WATER	R (SRCF)				
	Lot Number						
	C39-S015	50	35				
	i i	DATE	T11.45				
	TEST START:	7/9/19	1125				
	TEST END:	7/17/19	1314				

COMMENTS:			
REVIEWED BY:	/ \/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\	DATE:	8 5 19

NEW ENGLAND BIOASSAY - CHRONIC TOXICITY TEST BROOD DATA SHEET

FACILITY NAME & ADDRESS: Lowell Regional WV					y, 1st Street Bou	ulevard, Low	ell MA	01850	
NEB PROJECT NUMBER: 05.0044476.00					EST NUMBER:	19-88	6	COC#	C39-2558/59
TEST ORGANISM:	EST ORGANISM: Ceriodaphnia dubia				<24 hours			Lot #	Cd19 (RMH 142)
START DATE:	7/9/19	TIME:	112	5	END DATE:	7/17/1	.9	TIME:	1314

			Cultur	e Lot#		(Cd19 (F	RMH 14	12)			1			
	Cup#	B1	B2	В3	В4	B5	В6	В7	B8	B10	B11	Total	# Live	Analyst-	Analyst-
Effluent	Day					Rep	licate	· · · · · · · · · · · · · · · · · · ·				Live Young	Adults	Transfer	Counts
Concentration	Day Number	Α	В	С	D	Е	F	G	Н	ı	J				
	0	√	✓	√	√	√	√	√	√	√	√	0	10	СН	
	1	√	✓	✓	✓	✓	✓	√	✓	√	✓	0	10	cw	
	2	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	0	10	СН	
NEB Lab	3	5	6	6	5	5	3	7	6	5	6	54	10	СН	СН
Synthetic	4	3	5	8	5	✓	✓	√	1	✓_	✓	22	10	cw	CW
Diluent	5	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	0	10	СН	СН
	6	11	8	16	✓	9	2	1	14	10	5	76	10	ко	ко
	7	✓	17	✓	✓	✓	✓	18	22	11	✓	68	10	ко	ко
	8	✓	3	2	√	✓	4	18	✓	✓	✓	27	10	CH	СН
	totals	19	39	32	10	14	9	44	43	26	11	247	10		МС
		Α	В	С	D	Е	F	G	Н		J				
	0	✓	✓	✓	✓	√	✓	√	✓	✓	✓	0	10		
	1	✓	✓	✓	✓	✓	✓	√	✓	✓	✓	0	10		
	2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10	No.	
Merrimack	3	4	5	1	3	✓	✓	4	2	6	4	29	10		
River	4	8	✓	10	14	2	✓	5	8	✓	✓	47	10		
Control	5	✓	3	✓	✓	√	9	√ √	✓	√/x	✓	12	9	Mires van	
	6	19	5	7	11	16	3	14	3	Х	4	82	9	V 5. 5.	
	7	4	1	12	16	6	11	16	11	Х	1	42	9		
	8	2	✓	6	18	3	1	5	3	Х	4	8	9		
	totals	31	14	30	28	27	24	23	24	6	13	220	9		Fitzi :
		Α	В	С	D	Е	F	G	Н	1	J	ins b	No. str		
	0	✓	✓	✓	✓	√	✓	✓	✓	✓	✓	0	10		(* (128). o
	1	√	✓	✓	>	\	✓	√	✓	✓	✓	0	10	114 6	h f
	2	✓	✓	✓	√	✓	✓	✓	✓	✓	✓	0	10		
	3	✓	✓	✓	✓	√	5	✓	✓	✓	5	10	10		
6.25%	4	3	2	12	4	8	✓	6	4	6	5	50	10		16.58
	5	_✓	✓	✓	√	✓	✓	✓	✓	✓	✓	0	10		
	6	4	7	12	√	11	√	12	1	4	2	53	10		
	7	2	7	18	17	4	√	9	✓	5	2	64	10		
	8	3	2	8	7	5	7	2	✓	1	√	27	10		
	totals	12	18	34	28	28	12	29	5	16	14	204	10	NYSIE	1947

Notes:

Replicates in which the neonates are marked with a strike are judged to contain 4th broods (rather than

split-broods), and the 4th brood is not included in the reproduction totals per EPA-821-R-02-013.

Adults producing no neonates were determined to be non-reproducing females at test termination.

NEW ENGLAND BIOASSAY - CHRONIC TOXICITY TEST BROOD DATA SHEET

FACILITY NAME & ADDRESS: Lowell Regional WW Utility, 1st Street Boulevard, Lowell MA 01850

NEB PROJECT NUMBER: 05.0044476.00 ORGANISM: Ceriodaphnia dubia START DATE: 7/9/19

												Total	# Live		
Effluent	Day					_	licate		r	r		Live Young	Adults	57,144	
Concentration	Number	A	В	С	D	E	F	G	Н	1	J				
	0	√	√	√	√	√	√	√	√	✓	√	0	10		95.0
	1	√	√	√	√	√	√	√	√	\ \ .	√	0	10	CHILL	
	2	√	√	√	√	√	✓	√	✓	✓		0	10	EN 15	3100
	3		√	√	√	√	5	√	1	√	1	7	10		
12.5%	4	8	5	2	√	3	√	10	10	2	10	50	10		
	5	√	√	√	√	√	5	✓	√	√	√	5	10		
	6	3	√ 11	1	1	2	9	3	3	6	12	40	10		
	7		11	9	12	4	4	5 ✓	5	3	9 /	74	10		
	8 totals	23	21 37	16 28	8 21	8 17	1 23	18	6 19	1 12	32	54 230	10		
	totais		В	C	D D	E	F	G				230	10		
	0	A ✓	B √	\ \	√ 	<u>E</u> √	F √	√ -	H	1		0	10		100
	1	√	✓	✓	✓ ✓	\ \	\ _/	✓	√	\ \ \ \	√	0	10		
r	2	√	√	√	√	√	\ \ \ \	_\/	√	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	0	10		
	3	1	\ \ \	6	2	1	4	1	1	4	4	24	10		
25%	4	10	6	10	10	8	√	8	4	6	2	64	10		
2570	5		1	<u> </u>		√ ✓	9	√ √	- √	1	_\/	9	10		
	6	9	4	15	<i>\</i>	14	3	1	15	1	7	69	10		
	7	7	15	15	8		15	9	1	12	1	68	10		
	8	6	14	2	√	3	11	9	V	√/x	2	0	9		
	totals	33	25	31	20	23	31	19	21	23	14	234	9		
		Α	В	С	D	E	F	G	Н	1	J	2000	n=(8-3	de la Mi	
	0	√	√	√	√	√	√	√	√	V	√	0	10	EBSS	
	1	✓	√	✓	✓	✓	✓	✓	✓	✓	√	0	10	July 10	
	2	✓	√	\	✓	√	✓	>	✓	✓	√	0	10		1028
	3	✓	3	4	3	2	✓	5	1	5	5	28	10		
50%	4	✓	✓	10	10	4	✓	10	10	10	✓	54	10		
	5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	0	10		
	6	10	9	14	5	9	✓	10	6	11	5	79	10		1788
	7	13	1	15	10	15	√	17	7	19	8	39	10	MARSA	615
	8	√	14	7	8	16	√	12	11	11	13	27	10		1400
	totals	23	27	28	36	15	0	25	24	26	31	227	10	10 O O O	tital (
		A	В	С	D	E	F	G	H		J	1000			
	0	√	√	√	√	✓	√	√	√	√	√	0	10		
	1	√	√	√	√	√	√	√	√	√	√	0	10		FEX FE
	2	√	√	√ -	√	√	√	√	√	✓	√	0	10		
1000/	3	5	4	5	√	6	4	4	4	2	5	39	10		el/e-a
100%	4	10	12	10	√	12	√	10	√	10	10	74	10		BUILD
	5	√ 11	√ 2	✓ 2	√	√ 12	8	√ 12	√ 11	√	√	8	10		Marie.
	6	14	3	3	5	12	4	13	11	1	8	74	10		
	7	4	1	14	√	12	7	9	8	11	5	46	10		
	8 totals	7	12	2	9	11	6	8	12	13	9	21	10		
	totals	29	20	32	14	30	23	27	35	24	28	262	10		TO IS

Report Date: Test Code/ID: 18 Jul-19 10:16 (p 1 of 6) 19-886 / 05-3840-1152

					rest Code	IID:	19-000	0 / 00-3040-	1102
Ceriodaphnia	7-d Survival and R	eproduction To	est	<u> </u>			New Eng	land Bioas	say
Analysis ID:	17-9196-2607	Endpoint:	2d Survival Rate		CETIS Ver	sion:	CETISv1.9.4		
Analyzed:	18 Jul-19 10:15	Analysis:	Linear Interpolation (ICPIN)		Status Lev	vel:	1		
Batch ID:	10-0848-7679	Test Type:	Reproduction-Survival (7d)		Analyst:				
Start Date:	09 Jul-19 11:25	Protocol:	EPA/821/R-02-013 (2002)		Diluent:	Rece	eiving Water		
Ending Date:	17 Jul-19 13:14	Species:	Ceriodaphnia dubia		Brine:	Not A	Applicable		
Test Length:	8d 2h	Taxon:	Branchiopoda		Source:	In-Ho	ouse Culture	Age:	<24
Sample ID:	01-2346-1574	Code:	75BDFC6		Project:				
Sample Date:	08 Jul-19 07:00	Material:	WWTF Effluent		Source:	Lowe	ell RWWU (MA010	00633)	
Receipt Date:	08 Jul-19 16:00	CAS (PC):			Station:				
Sample Age:	28h	Client:	New England Testing Labs						

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Log(X)	Linear	1307537	200	Yes	Two-Point Interpolation

Point Estimates

 Level
 95% LCL
 95% UCL

 LC50
 >100
 n/a
 n/a

2d Survival F	d Survival Rate Summary					Isotonic Variate					
Group	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	A/B	Mean	%Effect
0	D	10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
6.25		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
12.5		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
25		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
50		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%
100		10	1.0000	1.0000	1.0000	0.0000	0.00%	0.0%	10/10	1	0.0%

2d Survival Rate Detail

Group	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	D	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000
6.25		1,0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1:0000
12.5		1.0000	1.0000	1.0000	1:0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
50		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1,0000
100		1.0000	1.0000	1.0000	1.0000	1,0000	1,0000	1.0000	1,0000	1,0000	1,0000

2d Survival Rate Binomials

Group	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	D	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
6.25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
12.5		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	0/1	1/1
50		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
100		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

000-222-335-4 CETIS™ v1.9.4.1 Analyst:_____ QA:_____

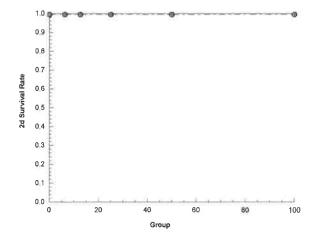
Report Date: Test Code/ID: 18 Jul-19 10:16 (p 2 of 6) 19-886 / 05-3840-1152

Ceriodaphnia 7-d Survival and Reproduction Test

New England Bioassay

Analysis ID: 17-9196-2607 Analyzed:

18 Jul-19 10:15


2d Survival Rate Endpoint: Analysis:

Linear Interpolation (ICPIN)

CETIS Version: Status Level:

CETISv1.9.4 1

Graphics

Report Date:

18 Jul-19 10:16 (p 3 of 6)

OL 110 Analytical Report								Test Code/ID: 19-886 / 09			5-3840-1152		
Ceriodaphnia	7-d Survival and	d Reproduc	ction To	est							1	New Englan	d Bioassay
Analysis ID:	16-2778-8707	End	point:	7d S	Survival Rat	:e			CET	IS Version	: CETISv	1.9.4	
Analyzed:	18 Jul-19 10:15	Ana	lysis:	Line	ar Interpola	ation (ICPIN	1)		Stat	us Level:	1		
Batch ID:	10-0848-7679	Test	Type:	Rep	roduction-S	Survival (7d)		Anal	lyst:			
Start Date:	09 Jul-19 11:25		ocol:		V821/R-02-	013 (2002)	,		Dilu	-	ceiving Wat	ter	
Ending Date:	17 Jul-19 13:14	Spe	cies:	Ceri	odaphnia d	ubia			Brin	e: No	t Applicable	,	
Test Length:	8d 2h	Tax	on:	Brar	nchiopoda				Sou	rce: In-	House Cultu	ıre	Age: <24
Sample ID:	01-2346-1574	Cod	e:	75B	DFC6				Proj	ect:			
Sample Date:	08 Jul-19 07:00	Mate	erial:	ww	TF Effluen	t			Sou	rce: Lo	well RWWU	(MA010063	33)
Receipt Date:	: 08 Jul-19 16:00	CAS	(PC):						Stati	ion:			
Sample Age:	28h	Clie	nt:	New	England T	esting Lab	s						
Linear Interpo	olation Options												
X Transform	Y Transform	See	d	Res	amples	Exp 95%	6 CL Me	thod					
Log(X)	Linear	3084	198	200		Yes	Tw	o-Point	Interp	olation			
Test Acceptal	bility Criteria	TAC L	imits										
Attribute	Test Stat		Uppe	г	Overlap	Decision	1						
Control Resp	1	0.8	>>		Yes	Passes (Criteria						
Point Estimat	tes												
Level	95% LCL	95% UCL											
LC50 >100	n/a	n/a											
7d Survival R	ate Summary					Calc	ulated Var	riate(A/I	3)			Isotor	nic Variate
Group	Code	Count	Mean		Min	Max	Std Dev	CV	%	%Effect	A/B	Mean	%Effect
0	D	10	1.000	0	1,0000	1.0000	0.0000	0.00	0%	0.0%	10/10	1	0.0%
6.25		10	1.000	0	1,0000	1.0000	0.0000	0.00	0%	0.0%	10/10	1	0.0%
12.5		10	1.000	0	1.0000	1.0000	0.0000	0.00	ጋ%	0.0%	10/10	1	0.0%
25		10	0.900	0	0.0000	1.0000	0.3162	35.	14%	10,0%	9/10	0.9667	3.33%
50		10	1.000	0	1.0000	1,0000	0,0000	0.00	0%	0.0%	10/10	0.9667	3.33%
100		10	1.000	0	1.0000	1.0000	0.0000	0.00	0%	0.0%	10/10	0.9667	3.33%
7d Survival R	ate Detail												
Group	Code	Rep 1	Rep 2	2	Rep 3	Rep 4	Rep 5	Rep	6	Rep 7	Rep 8	Rep 9	Rep 10
n	D	1.0000	1 000	n	1.0000	1:0000	1 0000	1.00	200	1 0000	1 0000	1.0000	1 0000

U					U	
_	_					

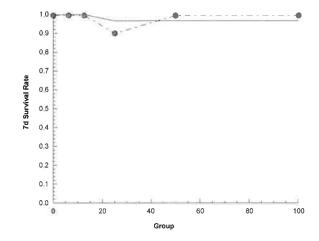
Group	Code	Rep 1	Rep 2	кер з	Rep 4	Rep 5	кер в	Rep /	Rep 6	кер э	Rep 10
0	D	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
12.5		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
25		1.0000	1,0000	1.0000	1.0000	1.0000	1,0000	1,0000	1.0000	0.0000	1,0000
50		1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,:0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1,0000

7d Survival Rate Binomials

Group	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	D	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
6.25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
12.5		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
25		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	0/1	1/1
50		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
100		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1

CETIS™ v1.9.4.1 000-222-335-4 Analyst:___ QA:_

Report Date: Test Code/ID: 18 Jul-19 10:16 (p 4 of 6) 19-886 / 05-3840-1152


Ceriodaphnia 7-d Survival and Reproduction Test

New England Bioassay

Analysis ID:16-2778-8707Endpoint:7d Survival RateCETIS Version:CETISv1.9.4Analyzed:18 Jul-19 10:15Analysis:Linear Interpolation (ICPIN)Status Level:1

Graphics

000-222-335-4

Report Date: Test Code/ID: 18 Jul-19 10:16 (p 5 of 6) 19-886 / 05-3840-1152

Age: <24

	TCSC GOGGID.	10 0007 00 0010 110
Carindanhuis 7 d Cyminal and Barradustian Tost		New England Disease
Ceriodaphnia 7-d Survival and Reproduction Test		New England Bioassay

Analysis ID: 07-1350-6951 Endpoint: Reproduction CETIS Version: CETISv1.9.4
Analyzed: 18 Jul-19 10:16 Analysis: Linear Interpolation (ICPIN) Status Level: 1

Batch ID: 10-0848-7679 Test Type: Reproduction-Survival (7d) Analyst:

EPA/821/R-02-013 (2002) Diluent: Receiving Water Start Date: 09 Jul-19 11:25 Protocol: Ending Date: 17 Jul-19 13:14 Species: Ceriodaphnia dubia Brine: Not Applicable Test Length: 8d 2h Taxon: Branchiopoda Source: In-House Culture

Sample ID: 01-2346-1574 **Code**: 75BDFC6 **Project**:

Sample Date: 08 Jul-19 07:00 Material: WWTF Effluent Source: Lowell RWWU (MA0100633)

Receipt Date: 08 Jul-19 16:00 CAS (PC): Station:

Sample Age: 28h Client: New England Testing Labs

TAC Limits

Linear Interpolation Options

Test Acceptability Criteria

X Transform	Y Transform	Seed	Resamples	Exp 95% CL	Method
Linear	Linear	30739	200	Yes	Two-Point Interpolation

Attribute	Test Stat	Lower	Upper	Overlap	Decision	
Control Resp	24.7	15	>>	Yes	Passes Criteria	

Point Estimates

Level		95% LCL	95% UCL
IC25	>100	n/a	n/a
IC50	>100	n/a	n/a

Reproduction Summary					Isotonic Variate					
Group	Code	Count	Mean	Min	Max	Std Dev	CV%	%Effect	Mean	%Effect
0	D	10	24.7	9	44	14	56.68%	0.0%	24,7	0.0%
6.25		10	19.6	5	34	9.501	48.47%	20.65%	23,26	5.83%
12.5		10	23	12	37	7,483	32,54%	6.88%	23.26	5.83%
25		10	24	14	33	6.074	25.31%	2.83%	23.26	5.83%
50		10	23.5	0	36	9.88	42.04%	4.86%	23.26	5.83%
100		10	26.2	14	35	6.143	23.45%	-6.07%	23.26	5.83%

Reproduction Detail

Group	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	D	19	39	32	10	14	9	44	43	26	11
6.25		12	18	34	28	28	12	29	5	16	14
12.5		23	37	28	21	17	23	18	19	12	32
25		33	25	31	20	23	31	19	21	23	14
50		23	27	28	36	15	0	25	24	26	31
100		29	20	32	14	30	23	27	35	24	28

000-222-335-4 CETIS™ v1.9.4.1 Analyst:____ QA:___

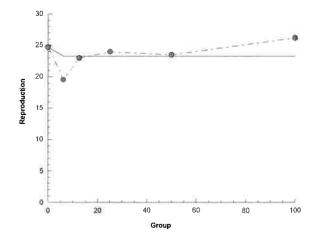
Report Date: Test Code/ID: 18 Jul-19 10:16 (p 6 of 6) 19-886 / 05-3840-1152

Ceriodaphnia 7-d Survival and Reproduction Test **New England Bioassay**

CETISv1.9.4 **CETIS Version:**

Analyzed:

Analysis ID: 07-1350-6951 18 Jul-19 10:16


Reproduction Endpoint: Analysis:

Linear Interpolation (ICPIN)

Status Level:

1

Graphics

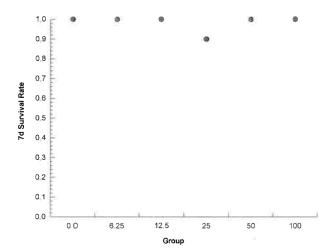
Analyst:_ QA:

17 of 32

Report Date: Test Code/ID: 18 Jul-19 10:16 (p 1 of 2) 19-886 / 05-3840-1152

	a 7-d Survival an	d Reprodu	ction Test							N	ew Englan	d Bioassay
Analysis ID:	16-8046-0191	End	•	f Survival Rat			CETI	S Versi	ion:	CETISv	1.9.4	
Analyzed:	18 Jul-19 10:16	Ana	lysis: S	TP 2xK Conti	ngency Tabl	es	Statu	s Leve	: :	1		
Batch ID:	10-0848-7679	Tes	t Type: R	eproduction-S	Survival (7d)		Analy	st:				
Start Date:	09 Jul-19 11:25	Pro	tocol: El	PA/821/R-02-	013 (2002)		Dilue	nt:	Rece	iving Wate	er	
-	17 Jul-19 13:14	Spe	cies: C	eriodaphnia d	lubia		Brine):	Not A	Applicable		
Test Length:	8d 2h	Тах	on: Bi	ranchiopoda			Sour	ce:	In-Ho	use Cultu	ге	Age: <24
Sample ID:	01-2346-1574	Cod		BDFC6			Proje					
•	: 08 Jul-19 07:00			WTF Effluen	t		Sour		Lowe	II RWWU	(MA010063	3)
•	: 08 Jul-19 16:00		S (PC):				Statio	on:				
Sample Age:	28h	Clie	nt: No	ew England T	esting Labs							
Data Transfo	rm	Alt Hyp					NOEL	LOEL		TOEL	TÜ	
Untransforme	d	C > T					100	>100		n/a		
Fisher Exact/	/Bonferroni-Holm	Test										
Control	vs Group		Test Sta	t P-Type	P-Value	Decision	(a:5%)					
Dilution Water	r 6,25		1,0000	Exact	1.0000	Non-Sign	ificant Effect					
	12.5		1.0000	Exact	1.0000	Non-Sign	ificant Effect					
	25		0.5000	Exact	1,0000	_	ificant Effect					
	50		1.0000	Exact	1.0000	•	ificant Effect					
	100		1.0000	Exact	1.0000	Non-Sign	ificant Effect					
Test Accepta	bility Criteria	TAC L	imits									
Attribute	Test Stat	Lower	Upper	Overlap	Decision							
Control Resp	1	0.8	>>	Yes	Passes C	riteria						
Data Summa	ry											
Group	Code	NR	R	NR + R	Prop NR	Prop R	%Effect					
0	D	10	0	10	1	0	0.0%					
6.25		10	0	10	1	0	0.0%					
12.5		10	0	40								
		10	U	10	1	0	0.0%					
25		9	1	10	1 0.9	0 0.1	0.0% 10.0%					
25 50					•							
		9	1	10	0.9	0.1	10.0%	U				
50	Rate Detail	9 10	1 0	10 10	0.9	0.1	10.0% 0.0%	<u> </u>				
50 100	Rate Detail Code	9 10	1 0	10 10	0.9	0.1	10.0% 0.0%	Rep 7	,	Rep 8	Rep 9	Rep 10
50 100 7d Survival R		9 10 10	1 0 0	10 10 10	0.9 1 1	0.1 0 0	10.0% 0.0% 0.0%	Rep 7		Rep 8 1,0000	Rep 9	Rep 10
50 100 7d Survival R Group	Code	9 10 10 Rep 1	1 0 0 Rep 2	10 10 10 Rep 3	0.9 1 1	0.1 0 0	10.0% 0.0% 0.0% Rep 6		0			
50 100 7d Survival R Group	Code	9 10 10 Rep 1	1 0 0 Rep 2	10 10 10 Rep 3	0.9 1 1 1 Rep 4	0.1 0 0 Rep 5	10.0% 0.0% 0.0% Rep 6	1.000	0 0	1,0000	1,0000	1.0000
50 100 7d Survival R Group 0 6.25	Code	9 10 10 Rep 1 1.0000 1.0000	1 0 0 Rep 2 1,0000 1,0000	10 10 10 Rep 3 1,0000	0.9 1 1 1 Rep 4 1.0000	0.1 0 0 Rep 5 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000	1,000	0 0 0	1,0000 1,0000	1.0000 1.0000	1,0000 1.0000
50 100 7d Survival R Group 0 6.25 12.5	Code	9 10 10 Rep 1 1,0000 1,0000	1 0 0 Rep 2 1,0000 1,0000	10 10 10 Rep 3 1,0000 1,0000	0.9 1 1 1 Rep 4 1.0000 1.0000	0.1 0 0 Rep 5 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000	1,000 1,000 1,000	0 0 0 0	1,0000 1,0000 1,0000	1,0000 1,0000 1,0000	1.0000 1.0000 1.0000
50 100 7d Survival R Group 0 6.25 12.5 25	Code	9 10 10 Rep 1 1.0000 1.0000 1.0000	Rep 2 1,0000 1,0000 1,0000 1,0000	10 10 10 10 Rep 3 1,0000 1,0000 1,0000	0.9 1 1 1 Rep 4 1.0000 1.0000 1.0000	0.1 0 0 Rep 5 1.0000 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000	1.000 1.000 1.000	0 0 0 0 0	1.0000 1.0000 1.0000 1.0000	1,0000 1,0000 1,0000 0,0000	1,0000 1,0000 1,0000 1,0000
50 100 7d Survival R Group 0 6.25 12.5 25 50 100	Code	9 10 10 Rep 1 1.0000 1.0000 1.0000 1.0000	Rep 2 1.0000 1.0000 1.0000 1.0000 1.0000	10 10 10 10 Rep 3 1,0000 1,0000 1,0000 1,0000	0.9 1 1 1 1 Rep 4 1.0000 1.0000 1.0000 1.0000	0.1 0 0 Rep 5 1.0000 1.0000 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000 1.0000	1,000 1,000 1,000 1,000	0 0 0 0 0	1.0000 1.0000 1.0000 1.0000 1.0000	1,0000 1,0000 1,0000 0,0000 1,0000	1.0000 1.0000 1.0000 1.0000 1.0000
50 100 7d Survival R Group 0 6.25 12.5 25 50 100	Code D	9 10 10 Rep 1 1.0000 1.0000 1.0000 1.0000	Rep 2 1.0000 1.0000 1.0000 1.0000 1.0000	10 10 10 10 Rep 3 1,0000 1,0000 1,0000 1,0000	0.9 1 1 1 1 Rep 4 1.0000 1.0000 1.0000 1.0000	0.1 0 0 Rep 5 1.0000 1.0000 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000 1.0000	1,000 1,000 1,000 1,000	0 0 0 0 0	1.0000 1.0000 1.0000 1.0000 1.0000	1,0000 1,0000 1,0000 0,0000 1,0000	1.0000 1.0000 1.0000 1.0000 1.0000
50 100 7d Survival R Group 0 6.25 12.5 25 50 100 7d Survival R	Code D	9 10 10 Rep 1 1,0000 1,0000 1,0000 1,0000 1,0000	1 0 0 1.0000 1.0000 1.0000 1.0000 1.0000	10 10 10 10 Rep 3 1,0000 1,0000 1,0000 1,0000 1,0000	0.9 1 1 1 1.0000 1.0000 1.0000 1.0000 1.0000	0.1 0 0 Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000 1.0000 1.0000	1.000 1.000 1.000 1.000 1.000	0 0 0 0 0	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	1,0000 1,0000 1,0000 0,0000 1,0000	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
50 100 7d Survival R Group 0 6.25 12.5 25 50 100 7d Survival R Group	Code D Rate Binomials Code	9 10 10 Rep 1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	Rep 2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	10 10 10 10 Rep 3 1,0000 1,0000 1,0000 1,0000 1,0000 Rep 3	0.9 1 1 1 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000	0.1 0 0 Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000 1.0000 1.0000	1,000 1,000 1,000 1,000 1,000 1,000 Rep 7	0 0 0 0 0	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	1,0000 1,0000 1,0000 0,0000 1,0000 1,0000	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
50 100 7d Survival R Group 0 6.25 12.5 25 50 100 7d Survival R Group 0	Code D Rate Binomials Code	9 10 10 10 Rep 1 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	1 0 0 Rep 2 1,0000 1,0000 1,0000 1,0000 1,0000 Rep 2	10 10 10 10 Rep 3 1,0000 1,0000 1,0000 1,0000 1,0000	0.9 1 1 1 1 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000	0.1 0 0 0 Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000 1.0000 1.0000	1,000 1,000 1,000 1,000 1,000 1,000 Rep 7	0 0 0 0 0	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 Rep 8	1,0000 1,0000 1,0000 0,0000 1,0000 1,0000 Rep 9	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Rep 10
50 100 7d Survival R Group 0 6.25 12.5 25 50 100 7d Survival R Group 0 6.25	Code D Rate Binomials Code	9 10 10 10 Rep 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	Rep 2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	10 10 10 10 Rep 3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.01000	0.1 0 0 0 Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Rep 6	1,000 1,000 1,000 1,000 1,000 1,000 Rep 7	0 0 0 0 0	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 Rep 8 1/1 1/1	1,0000 1,0000 1,0000 0,0000 1,0000 1,0000 Rep 9	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
50 100 7d Survival R Group 0 6.25 12.5 25 50 100 7d Survival R Group 0 6.25 12.5	Code D Rate Binomials Code	9 10 10 10 Rep 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.011 1/1 1/1	Rep 2 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,001	10 10 10 10 Rep 3 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	0.9 1 1 1 Rep 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Rep 4 1/1 1/1 1/1	0.1 0 0 0 Rep 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.10000 1.0000	10.0% 0.0% 0.0% Rep 6 1.0000 1.0000 1.0000 1.0000 1.0000 Rep 6 1/1 1/1 1/1	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	0 0 0 0 0	1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 Rep 8 1/1 1/1	1,0000 1,0000 1,0000 0,0000 1,0000 1,0000 Rep 9 1/1 1/1	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Rep 10

000-222-335-4 CETIS™ v1.9.4.1 Analyst:_____ QA:_____


Report Date: Test Code/ID: 18 Jul-19 10:16 (p 2 of 2) 19-886 / 05-3840-1152

Ceriodaphnia 7-d Survival and Reproduction Test

New England Bioassay

Analysis ID:16-8046-0191Endpoint:7d Survival RateCETIS Version:CETISv1.9.4Analyzed:18 Jul-19 10:16Analysis:STP 2xK Contingency TablesStatus Level:1

Graphics

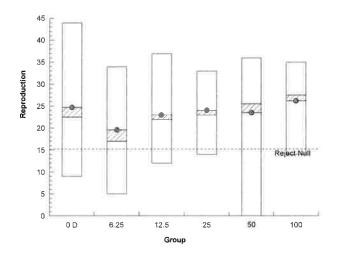
Report Date: Test Code/ID: 18 Jul-19 10:16 (p 1 of 2) 19-886 / 05-3840-1152

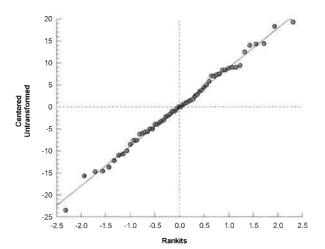
Ceriodaphni	a 7-d	Survival an	d Reprodi	uction Test							N	lew Englan	d Bioassay
Analysis ID:	05-2	2414-2151	En	dpoint: Re	production				CET	IS Version	: CETISv	1.9.4	
Analyzed:	18 J	lul-19 10:16	An	alysis: Pa	rametric-Co	ntrol vs	Trea	tments	Stat	us Level:	1		
Batch ID:	10-0	848-7679	Te	st Type: Re	production-S	Survival	(7d)		Anal	lvst:			
Start Date:		lul-19 11:25			A/821/R-02-				Dilu	-	ceiving Wate	er	
Ending Date	: 17 J	lul-19 13:14			riodaphnia d	•	,		Brin		t Applicable		
Test Length			•		nchiopoda				Sou	rce: In-House Culture		re	Age: <24
Sample ID:	01-2	2346-1574	Co	de: 75l	BDFC6				Proj	ect:			
Sample Date	e: 08 J	lul-19 07:00	Ma	terial: W\	VTF Effluen	t			Sou		well RWWU	(MA010063	3)
Receipt Date	e: 08 J	lul-19 16:00	CA	S (PC):					Stati	ion:			
Sample Age	: 28h		Cli	ent: Ne	w England T	esting I	_abs						
Data Transfo	orm		Alt Hyp						NOEL	LOEL	TOEL	ΤU	PMSD
Untransforme	ed		C > T						100	>100	n/a		38.38%
Dunnett Mul	tiple C	Comparison	Test										
Control	vs	Group		Test Stat	Critical	MSD	DF	P-Type	P-Value	Decisio	ι(α:5%)		
Dilution Wate	er	6.25		1.231	2.289	9.48	18	CDF	0.3167	Non-Sigi	nificant Effec	it	
		12.5		0.4105	2.289	9.48	18	CDF	0.6844	Non-Sigi	nificant Effec	:t	
		25		0,169	2.289	9.48	18	CDF	0.7783	Non-Sigi	nificant Effec	:t	
		50		0.2898	2.289	9.48	18	CDF	0.7334	Non-Sigi	nificant Effec	:t	
		100		-0.3622	2.289	9.48	18	CDF	0.9190	Non-Sig	nificant Effec	:t	
Test Accepta	ability	Criteria	TAC	Limits									
Attribute		Test Stat	Lower	Upper	Overlap	Decis	ion						
Control Resp		24.7	15	>>	Yes	Passe	es Cı	riteria					
ANOVA Tabl	e												
Source		Sum Squa	ares	Mean Sq	uare	DF		F Stat	P-Value	Decision	n(a:5%)		
Between		244.4		48.88		5		0.57	0.7226	Non-Sigr	nificant Effec	t	
Error		4630.6		85.7519		54		_					
Total		4875				59							
Distribution	al Test	ts											
Attribute		Test				Test S	Stat	Critical	P-Value	Decision	n(a:1%)		
Variances		Bartlett Eq	uality of V	ariance Test		9.343		15.09	0.0961	Equal Va	riances		
Distribution		Shapiro-W	ilk W Norr	nality Test		0.993	1	0.9459	0.9830	Normal [Distribution		
Reproductio	n Sun	nmary											
Group		Code	Count	Mean	95% LCL				Min	Max	Std Err	CV%	%Effect
0		D	10	24.7	14.68	34.72		22.5	9	44	4.427	56.68%	0.00%
6.25			10	19.6	12.8	26.4		17	5	34	3.004	48.47%	20.65%
12.5			10	23	17.65	28.35		22	12	37	2.366	32.54%	6.88%
25			10	24	19.66	28.34		23	14	33	1.921	25.31%	2.83%
50			10	23.5	16.43	30.57		25.5	0	36	3.124	42.04%	4.86%
100			10	26.2	21,81	30.59		27.5	14	35	1.943	23.45%	-6.07%
Reproductio	n Deta	ail											
Group		Code	Rep 1	Rep 2	Rep 3	Rep 4		Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0		D	19	39	32	10		14	9	44	43	26	11
6.25			12	18	34	28		28	12	29	5	16	14
12.5			23	37	28	21		17	23	18	19	12	32
25			33	25	31	20		23	31	19	21	23	14
50			23	27	28	36		15	0	25	24	26	31
100			29	20	32	14		30	23	27	35	24	28

000-222-335-4

CETIS™ v1.9.4.1

Analyst: ____ QA:___


Report Date: Test Code/ID: 18 Jul-19 10:16 (p 2 of 2) 19-886 / 05-3840-1152


Ceriodaphnia 7-d Survival and Reproduction Test

New England Bioassay

Analysis ID:	05-2414-2151	Endpoint:	Reproduction	CETIS Version:	CETISv1.9,4
Analyzed:	18 Jul-19 10:16	Analysis:	Parametric-Control vs Treatments	Status Level:	1

Graphics

NEB'S DATA SHEET FOR ROUTINE CHEMICAL AND PHYSICAL DETERMINATIONS

FACILITY NAME & ADDR			owell Regional WW Utility, 1st Street Boulevard, Lowell MA 01850							
NEB PROJECT NUMBER:			5.0044476.0		TEST ORGA			odaphnia dubia		
DILUTION WATER SOUR	CE:	Labor	atory Soft \	Water	START DAT	E:	7/9/19	TIME: 1125		
ANALYST	ко	LS	BA	BA	BA	СН	ко	ко		
NEB Lab Diluent	1	2	3	4	5	6	7	8		
Temp °C Initial	25.2	25.0	25.3	25.6	25.2	25.9	25.7	25.4		
D.O. mg/L Initial	8.4	8.2	8.1	8.1	8.1	8.0	8.2	8.2		
pH s.u. Initial	7.2	7.5	7.7	7.5	7.6	7.6	7.6	7.5		
Conductivity µS Initial	196	196	193	194	196	191	194	195		
Temp °C Final	25.3	25.7	25.5	25.7	25.7	25.2	25.0	25.4		
D.O. mg/L Final	7.7	8.0	7.7	8.1	7.9	8.1	8.3	6.6		
pH s.u. Final	7.8	7.7	7.9	7.7	7.5	7.7	7.8	7.5		
Conductivity µS Final	208	202	201	200	198	214	211	205		
Merrimack River Control	1	2	3	4	5	6	7	8		
Temp °C Initial	25.2	25.1	25.6	26.1	25.2	25.7	26.0	26.0		
D.O. mg/L Initial	8.4	8.8	9.0	9.1	8.9	8.9	8.4	8.4		
pH s.u. Initial	7.3	7.4	7.6	7.5	7.6	7.6	7.6	7.4		
Conductivity µS Initial	171	168	180	180	182	180	182	183		
Temp °C Final	25.3	25.7	25.6	25.3	25.7	26.3	25.2	25.6		
D.O. mg/L Final	7.6	8.0	7.6	8.0	7.8	8.1	8.0	6.0		
pH s.u. Final	7.8	7.8	7.9	7.6	7.5	7.5	7.9	7.3		
Conductivity µS Final	184	180	187	189	186	191	194	191		
6.25%	1	2	3	4	5	6	7	8		
Temp °C Initial	25.6	25.0	25.4	26.1	25.3	25.9	26.0	26.0		
D.O. mg/L Initial	8.4	8.2	8.2	8.1	8.1	8.3	8.3	8.7		
pH s.u. Initial	7.3	7.5	7.6	7.5	7.6	7.5	7.5	7.3		
Conductivity µS Initial	250	245	250	271	241	234	237	241		
Temp °C Final	25.4	25.8	25.5	25.3	25.7	26.2	25.3	25.5		
D.O. mg/L Final	7.6	7.9	7.6	7.9	7.8	8.0	7.7	6.5		
pH s.u. Final	7.6	7.6	7.7	7.6	7.5	7.6	7.7	7.3		
Conductivity µS Final	267	260	261	283	242	247	252	252		
12.5%	1	2	3	4	5	6	7	8		
Temp °C Initial	25.4	25.0	25.4	26.1	25.3	25.9	26.0	26.0		
D.O. mg/L Initial	8.2	8.2	8.1	8.0	8.0	8.1	8.1	8.1		
pH s.u. Initial	7.4	7.4	7.7	7.5	7.6	7.5	7.5	7.3		
Conductivity µS Initial	295	289	337	340	286	278	274	287		
Temp °C Final	25.4	25.8	25.4	25.3	25.6	26.1	25.3	25.5		
D.O. mg/L Final	7.7	8.0	7.6	7.9	7.8	8.2	7.8	7.0		
pH s.u. Final	7.7	7.6	7.7	7.6	7.5	7.6	7.7	7.4		
Conductivity µS Final	308	301	344	348	286	290	285	295		

NEB'S DATA SHEET FOR ROUTINE CHEMICAL AND PHYSICAL DETERMINATIONS

FACILITY NAME & ADDR			Lowell Regional WW Utility, 1st Street Boulevard, Lowell MA 01850									
NEB PROJECT NUMBER:		0	5.0044476.0	00	TEST ORGA	NISM	Ceriodaphnia dubia					
DILUTION WATER SOUR	CE:	Laboi	ratory Soft '	Water	START DAT	E:	7/9/19	TIME: 1125				
25%	1	2	3	4	5	6	7	8				
Temp °C Initial	25.3	24.9	25.5	26.2	25.3	25.9	26.0	26.0				
D.O. mg/L Initial	8.2	8.2	8.2	8.1	8.1	8.0	8.0	8.0				
pH s.u. Initial	7.5	7.6	7.6	7.5	7.5	7.4	7.5	7.3				
Conductivity µS Initial	357	406	493	501	374	371	376	370				
Temp °C Final	25.3	25.8	25.5	25.3	25.6	26.1	25.5	25.5				
D.O. mg/L Final	7.8	8.0	7.7	7.9	7.8	8.2	7.8	7.3				
pH s.u. Final	7.7	7.6	7.7	7.7	7.5	7.8	7.7	7.4				
Conductivity µS Final	429	419	501	512	376	385	388	377				
50%	1	2	3	4	5	6	7	8				
Temp °C Initial	25.2	24.9	25.5	26.3	25.1	25.9	26.0	26.0				
D.O. mg/L Initial	8.2	8.2	8.3	8.1	8.0	7.9	7.9	8.2				
pH s.u. Initial	7.5	7.5	7.5	7.4	7.3	7.3	7.4	7.2				
Conductivity µS Initial	629	621	796	804	543	549	544	555				
Temp °C Final	25.3	25.8	25.4	25.3	25.7	26.1	25.3	25.5				
D.O. mg/L Final	7.9	8.0	7.7	8.0	9.0	8.1	7.9	7.5				
pH s.u. Final	7.7	7.6	7.8	7.8	7.6	7.7	7.7	7.5				
Conductivity µS Final	655	642	806	819	552	574	569	564				
100%	1	2	3	4	5	6	7	8				
Temp °C Initial	25.3	24.8	25.8	26.6	25.1	25.9	26.0	26.0				
D.O. mg/L Initial	8.2	8.3	8.7	8.4	8.1	7.7	7.6	8.3				
pH s.u. Initial	7.4	7.4	7.4	7.3	7.1	7.0	7.2	7.0				
Conductivity µS Initial	1,055	1,053	1,416	1,422	910	903	914	931				
Temp °C Final	25.3	25.9	25.4	25.3	25.7	26.1	25.5	25.5				
D.O. mg/L Final	7.8	7.9	7.6	8.0	7.6	8.3	7.8	7.5				
pH s.u. Final	7.8	7.7	7.9	7.9	7.6	7.9	7.6	7.6				
Conductivity μS Final	1,092	1,082	1,425	1,436	914	798	942	920				

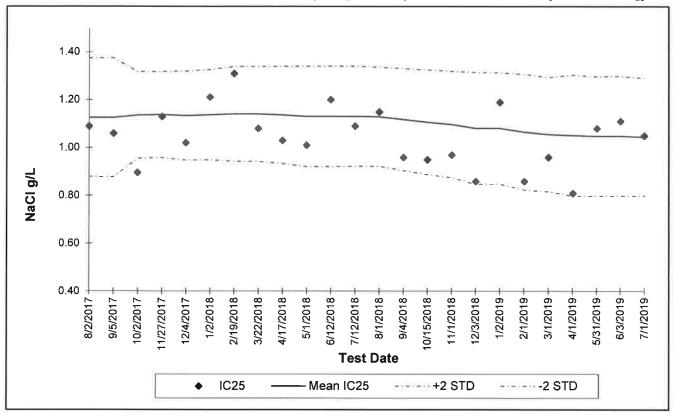
Tab	le o	f Ra	ndo	m Po	ermuta	tion	s of	16				C.d	ubia	Test	ID#		19-	886	
7	12	15	15	1	2	7	16	10	2	14	15	7	13	13	10	6	1	8	10
13	3	8	16	7	10	11	10	13	5	11	7	13	16	7	7	5	13	2	14
3	1	4	5	14	13	3	14	9	13	13	2	9	15	6	2	8	4	5	8
11	8	16	14	15	6	2	6	2	16	8	5	12	3	9	13	4	3	10	4
14	9	1	6	3	9	14	13	8	6	5	8	14	7	3	15	13	11	4	7
2	16	10	13	5	5	13	2	11	7	3	12	5	14	12	16	2	2	9	15
4	6	13	7	2	15	1	9	1	4	7	10	6	9	11	9	7	6	16	11
6	14	6	10	4	14	4	15	3	3	4	16	2	6	5	1	12	10	6	9
10	15	2	1	13	12	16	3	4	8	10	1	15	5	14	12	14	12	3	2
12	10	7 5	12 2	9	11 7	9	8 12	12	14	15	4	11	8	16	8 4	9	14	14	1
15 16	7 2	3 11	8	10 8	8	8 15	5	6 16	15 1	6 1	13 9	16 8	12 1	15 8	4 14	11	8 5	12 13	6
9	13	14	3	6	4	10	11	5	12	9	3	10	4	4	3	16 10	9	15	5 3
8	11	9	4	11	3	12	7	7	10	12	14	3	10	1	5 6	15	9 16	15	3 12
1	5	12	11	16	16	5	4	14	9	16	11	1	2	10	5	1	15	7	13
5	4	3	9	12	1	6	1	15	11	2	6	4	11	2	11	3	7	11	16
_	•	J			-	Ū	_			conc				-		•	•		
11	8	16	5	5	13	1	13	2	16	14	12	9	8	7	5	13	3	13	3
2	2	8	8	14	16	4	3	8	11	10	14	15	1	2	11	4	5	15	9
6	13	2	13	6	5	9	15	11	10	12	6	16	15	16	9	10	12	16	15
14	12	4	16	16	11	14	10	5	12	3	3	12	14	15	13	6	4	1	16
8	6	3	9	4	10	6	4	16	2	2	9	8	16	4	6	5	15	7	8
9	15	12	10	3	2	12	6	1	15	4	13	7	7	9	12	14	8	8	11
3	10	11	12	13	12	5	11	7	8	9	5	14	11	10	1	3	13	3	5
16	1	13	14	8	14	15	5	3	7	11	15	6	12	5	7	11	1	14	4
1	14	14	2	9	15	16	14	6	14	7	8	3	13	11	8	7	7	12	7
4	4	6	4	12	3	11	8	15	9	8	1	13	6	3	3	15	9	9	12
15	5	1	11	10	6	3	7	10	5	5	11	10	10	12	15	16	14	5	2
5	3	5	6	7	7	13	2	14	3	16	4	5	5	13	4	9	16	2	6
12	7	15	15	15	9	8	12	12	13	15	10	1	4	6	16	2	6	11	1
10	11	10	3	2	4	2	1	4	6	6	7	11	9	14	10	8	11	4	13
7	9	7	7	11	1	7	16	13	1	13	2	4	2	1	2	12	2	10	14
13	16	9	1	1	8	10	9	9	4	1	16	2	3	8	14	1	10	6	10
1	6	7	4	8	6	5	2	8	15	4	6	6	1	4	5	7	13	2	10
9	15	11	3	11	15	9	10	1	3	8	2	15	7	9	8	16	1	14	3
10	16	4	5	12	9	16	11	7	1	7	16	11	8	3	3	12	2	3	4
4	14	1	9	5	5	4	13	6	8	15	5	12	5	7	16	5	11	8	1
7	3	13	14	15	2	1	14	16	5	14	9	2	16	1	12	6	14	4	13
16	11	2	1	14	16	6	9	3	4	16	14	3	15	11	11	3	9	12	5
3 11	10	16	16	13	7	13	1	11	14	9	10	16	2	10	2	10	7	10	16
15	13 2	9 3	13 12	4 9	13 12	8 2	3 4	5 13	13 10	10 3	12 13	5 14	12 4	5 2	14 1	13 14	16	5 6	6
14	1	14	6	10	1	3	12	4	2	2	4	13	3	16	9	9	8 3	7	12 14
13	12	5	11	3	11	15	8	2	7	11	7	8	14	6	4	4	4	15	11
12	5	10	7	2	14	7	15	14	16	13	1	9	10	12	10	11	10	9	8
8	9	8	10	6	4	11	7	10	11	6	8	4	9	8	15	8	6	11	9
2	7	6	2	1	8	10	6	15	12	1	11	7	11	13	6	1	15	13	15
6	4	15	8	16	10	14	16	9	6	12	3	10	6	14	7	2	12	16	7
5	8	12	15	7	3	12	5	12	9	5	15	1	13	15	13	15	5	1	2
									rep										
13	4	10	4	16	13	16	13	5	3	6	14	1	16	8	7	2	3	3	12
5	14	4	6	8	2	15	1	13	14	16	4	15	4	3	12	12	1	4	7
2	2	2	15	14	16	9	12	16	6	10	15	14	9	10	1	14	8	8	16
7	12	15	8	12	3	5	14	7	12	5	13	16	1	7	5	11	2	9	3
6	9	7	14	9	14	10	11	15	11	12	1	12	12	14	16	3	11	11	8
14	5	16	7	10	8	11	8	14	13	7	11	6	3	11	4	4	6	6	9
15	11	8	9	7	12	8	7 16	1	15	9	3	3	7	13	11	10	4	5	1
11 4	6 10	6 3	1 16	4	1 11	3 7	16 9	12 6	5	4	9 8	13 4	13	6	8 2	15 16	9	1	14 4
1	8	1	13	2 1	15	4	4	11	9	1 2	16	5	11 8	5 1	9	5	10 12	12 16	4 6
9	7	14	2	6	4	14	10	9	8	15	10	э 7	10	9	10	6	14	10	11
12	1	9	10	15	5	2	15	10	2	14	2	8	2	4	13	8	5	15	5
3	3	12	11	5	9	6	6	3	10	13	12	9	6	2	15	7	15	7	13
10	15	11	5	13	7	12	5	2	7	11	5	10	15	12	3	1	13	13	10
8	13	13	3	3	10	13	2	4	1	8	6	11	14	15	6	9	16	2	2
16	16	5	12	11	6	1	3	8	16	3	7	2	5	16	14	13	7	14	15

Ceriodaphnia dubia						Culture Chart						ot # _ ca19 C			(RMH 142)		
Brood	mothe	r source	: 135	S	B. 4	1 Sou	rce's bro	od size:	23	(Qty.)			Lo	well	7-9-1	9	
Tech	AN	KF	SIP	M		AU	Art	KF							15-16-54	15.00	
Date	7.2	7.3	7-4	7.5		7-7	7-8	7.9									
Day acc.	0	1	2	3	4	5	6	7		8	9	10	11	12	13	14	
Cup #	N	N	N	5		24	N	7 T. 125	1				SERVIE ULANSA				
2	N	N	N	5		24	N	12 To Ya4	2								
3	N	N	N	4		24	N	13 Y 19	3								
4	N	N	h	5		24	N	4 74 723	4								
5	N	N	h	5		24	N	TS TS 24	5								
6	N	N	N	5		24	N	TO TO 24	6							7450 7450	
7	N	N	N	4		24	N	15 Ty Y21	7								
8	N	N	N	10		24	N	T8 T8	8								
9	N	N	N	0		24	2	Y	9				VO.				
10	N	N	h	5		ZY	2	19 T9 Y20	10								
11	N	N	h	5		24	N		11								
12	N	N	h	5		24	~	Y21	12								
13	N	N	h	4		24	N	710 23	13								
								roduced in neos. by 3r				od mothe	r dead	N = no r	neonates orted egg:		
✓ or	P = nec	nates pre	esent afte	er renewa	l on prev	ious day	see time	Un a state of			A→	= ассер	table for	acute tes	sting only		
Office and		m colle			The second	ray diagra			i ei			2		THE REAL PROPERTY.			
Proje	1000			Symbols		used? (Y/N)		Time p	eriod,	neonate	s release	ed		Collec	tion date	/ time	
(004	447	4	T		Y	7.8.		100		1.8.19			7.9.1	9/09	35	
_	0044	1471	e	0		Y	7.8	19/14:	55 -	77	8.19	1710	No.	7.9	19/00	755	
1	51.1	1-111	100	TT:	E COLUMN	V	- 5	1011	12-		5101		2 2 2 2 2		101	- 20	

rest organism collection.		ray diagr used?		
Project#	Symbols (✓ / P)	(Y/N)	Time period, neonates released	Collection date / time
0044474	THE PARTY	Y	78.19/1455 -> 7.8.19/1710	7.9.19/0935
0044476	(T)	7	7.8.19/1455 -> 7.8.19/1710	7.9.19/0955
0561646	回	4	7.8.19/1630 -> 7.8.19/1710	7.9.19/1030
	T :			
	т			
	T			

SAMPLE RECEIPT CHEMISTRY & CHAIN OF CUSTODY DOCUMENTS

NEW ENGLAND BIOASSAY - INITIAL CHEMISTRY DATA


PERMITTEE:	Lowell RWWU
NEB JOB #	05.0044476.00

ſr						
DATE RECEIVED	7/8/19		7/10	0/19	7/12/19	
SAMPLE TYPE:	EFF #1	RIVER #1	EFF #2	RIVER #2	EFF #3	RIVER #3
coc#	C39-2558	C39-2559	C39-2609	C39-2610	C39-2664	C39-2665
pH (SU)	7.0	7.1	7.2	7.4	6.6	6.7
Temperature (°C)	10.6	6.6	6.7	6.4	5.3	7.0
Dissolved Oxygen (mg/L)	9.3	9.2	9.4	9.6	9.1	9.3
Conductivity (µmhos)	1,081	171	1,433	178	943	183
Salinity (ppt)	< 1	< 1	<1	<1	< 1	< 1
TRC - DPD (mg/L)	0.002	0.020	0.012	0.014	0.016	0.037
TRC - Amperometric (mg/L)	N/A	N/A	N/A	N/A	N/A	N/A
Hardness (mg/L as CaCO ₃)	82	20	122	24	76	24
Alkalinity (mg/l as CaCO ₃)	80	15	80	10	50	15
Tech Initials	CW	CW	ко	КО	CW	CW

NOTE: NA = NOT APP	LICABLE	
Data Reviewed By:	Date Reviewed:	8/5/19

REFERENCE TOXICANT CHARTS

New England Bioassay
Reference Toxicant Data: Sodium chloride (NaCl) Ceriodaphia dubia Chronic Reproduction IC₂₅

Test ID	Date	IC ₂₅	Mean IC ₂₅	STD	-2STD	+2STD	Avg. CV	Repro PMSD (%)	Avg. PMSD (%)
17-1146	8/2/2017	1.09	1.13	0.12	0.88	1.38	0.11	23.94	15.20
17-1317	9/5/2017	1.06	1.13	0.12	0.88	1.38	0.11	33.78	16.13
17-1516	10/2/2017	0.90	1.14	0.09	0.95	1.32	0.08	24.47	16.53
17-1787	11/27/2017	1.13	1.14	0.09	0.96	1.32	0.08	19.97	16.69
17-1846	12/4/2017	1.02	1.13	0.09	0.95	1.32	0.08	14.69	16.60
18-10	1/2/2018	1.21	1.14	0.09	0.95	1.33	0.08	10.81	16.36
18-271	2/19/2018	1.31	1.14	0.10	0.94	1.34	0.09	22.90	16.56
18-416	3/22/2018	1.08	1.14	0.10	0.94	1.34	0.09	17.59	16.88
18-553	4/17/2018	1.03	1.14	0.10	0.93	1,34	0.09	38.54	17.77
18-607	5/1/2018	1.01	1.13	0.10	0.92	1.34	0.09	24.65	18.25
18-816	6/12/2018	1.20	1.13	0.10	0.92	1.34	0.09	46.97	19.59
18-996	7/12/2018	1.09	1.13	0.10	0.92	1.34	0.09	11.41	19.70
18-1103	8/1/2018	1.05	1.13	0.10	0.92	1.34	0.09	17.23	19.70
18-1315	9/4/2018	0.96	1.13	0.10	0.92	1.33	0.09	22.12	
18-1577									20.09
	10/15/2018	0.95	1.11	0.11	0.89	1.33	0.10	24.32	20.64
18-1625	11/1/2018	0.97	1.10	0.11	0.88	1.32	0.10	31.57	21.34
18-1756	12/3/2018	0.86	1.08	0.12	0.85	1.32	0.11	15.77	21.00
19-8	1/2/2019	1.19	1.08	0.12	0.85	1.31	0.11	40.72	21.30
19-177	2/1/2019	0.86	1.07	0.12	0.82	1.31	0.11	18.71	21.63
19-265	3/1/2019	0.96	1.06	0.12	0.82	1.29	0.11	19.84	22.13
19-403	4/1/2019	0.81	1.05	0.13	0.80	1.30	0.12	10.09	21.85
19-674	5/31/2019	1.08	1.05	0.12	0.80	1.30	0.12	15.59	21.93
19-688	6/3/2019	1.11	1.05	0.12	0.80	1.30	0.12	15.24	22.23
19-926	7/1/2019	1.05	1.04	0.12	0.80	1.29	0.12	12.60	22.23

National 75th Percentile and 90th Percentile CV Averages for Ceriodaphnia Reproduction IC25 (EPA 833-R-00-003): 0.45 - 0.62 PMSD Upper and Lower Bounds for Ceriodaphnia Reproduction (EPA-821-R-02-013): 13% - 47%

Work Order: 9G08023 Date: 8/6/2019 11:24:56AM

Results:

Sample: Effluent Day 1

9G08023-01 (Water)

General Chemistry

	Result	Reporting Limit	Units	Date Analyzed
Alkalinity as CaCO3	76	2	mg/L	07/15/19
Ammonia	3.8	0.1	mg/L	07/11/19
рН	7.2	0.1	SU	07/08/19 17:30
Specific Conductance	974	2	uS/cm	07/10/19
Total Dissolved Solids	452	10	mg/L	07/09/19
Total Organic Carbon	9.4	0.2	mg/L	07/12/19
Total solids (TS)	596	10	mg/L	07/12/19
Total Suspended Solids	19	2	mg/L	07/11/19

Total Metals

	Result	Reporting	Units	Date
		Limit		Analyzed
Calcium	24.6	0.05	mg/L	07/10/19
Magnesium	5.13	0.05	mg/L	07/10/19
Aluminum	0.032	0.001	mg/l	07/16/19
Cadmium	ND	0.0001	mg/L	07/16/19
Copper	0.006	0.001	mg/l	07/16/19
Nickel	0.003	0.001	mg/l	07/16/19
Lead	0.0008	0.0001	mg/L	07/16/19
Zinc	0.060	0.001	mg/l	07/16/19
Total Hardness	82.5	0.125	mg/L	07/10/19

Sample: Merrimack River Day 1

9G08023-02 (Water)

General Chemistry

	Result	Reporting Limit	Units	Date Analyzed
Alkalinity as CaCO3	12	2	mg/L	07/15/19
Ammonia	0.2	0.1	mg/L	07/11/19
pH	7.1	0.1	SU	07/08/19 17:30
Specific Conductance	154	2	uS/cm	07/10/19
Total Dissolved Solids	ND	10	mg/L	07/09/19
Total Organic Carbon	4.4	0.2	mg/L	07/12/19
Total solids (TS)	104	10	mg/L	07/12/19
Total Suspended Solids	5	2	mg/L	07/11/19

Work Order: 9G08023 Date: 8/6/2019 11:24:56AM

Sample: Merrimack River Day 1 (Continued)

9G08023-02 (Water)

Total Metals

	Result	Reporting	Units	Date
		Limit		Analyzed
Calcium	6.24	0.05	mg/L	07/10/19
Magnesium	1.25	0.05	mg/L	07/10/19
Aluminum	0.050	0.001	mg/l	07/09/19
Cadmium	ND	0.0001	mg/L	07/09/19
Copper	0.001	0.001	mg/l	07/09/19
Nickel	ND	0.001	mg/l	07/09/19
Lead	0.0004	0.0001	mg/L	07/09/19
Zinc	0.008	0.001	mg/l	07/09/19
Total Hardness	20.7	0.125	mg/L	07/10/19

NEW ENGLAND BIOASSA	AY CHAIN-OF-CUSTODY
EFFLUENT Sample Set #1	RECEIVING WATER
Sampler: 5IN BOK MCGOL	Sampler: Acron Fox
Title: CHEMIST	Title: Ops super Int
Facility: Lowell Regional Wastewater Utilities	Title: 5 Super Int Facility: Lowell Regional Wastewater Utilities
Sampling Method: X Composite Sample ID: Start Date: 7/7/18 Time: 7==> Any End Date: 7/4/11 Time: 7==> Any	Sampling Method: X Grab Sample ID: Merrimack River Date Collected: 7/9/20/1/9=30M Time Collected:
Sampling Method: Grab (for pH and TRC only)	
Date Collected:	
Time Collected:	
Sample Type: X Dechlorinated Unchlorinated Chlorinated	
Effluent Sampling Location and Procedures: Plant outfall after of	lechlorination. 24 hr. composite.
Receiving Water Sampling Location and Procedures: Merrimack (Rt.38) Requested Analysis: X Chronic and modified acute	River upstream of the plant discharge at the Hunts Fall Bridge,
Sample S	hipment
Method of Shipment: New England Testing Labs	
Relinquished By: Date:_	7-8-20/9 Time: 12,05 pm
Received By: Date:	7-6-19 Time: 1205
Relinquished By: Date:	7-815 Time: -1440
Received By: Date:_	7/8/19 Time: 1440
Relinquished By: Date:_	7/8/19 Time: 4:00
Received By: Date:	7/8/19 Time: //e00
FOR NEB U	ISE ONLY
* Please return all ice packs NEB has provided to insure ac	
Temperature of Effluent Upon Receipt at Lab: 10.4 °C T	emperature of Receiving Water Upon Receipt at Lab: 6.6 °C
1 2	Receiving Water COC# <u>C39-2559</u>
Linuoni Coon Coo O	COULTAINE AN ARCH COCH C J / FUJ /

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY, 77 BATSON DRIVE, MANCHESTER CT 06042

NEW ENGLAND BIOAS	SAI CHAIN-OF-CUSTODI
EFFLUENT Sample Set #2	RECEIVING WATER
Sampler: 5,N Bok Majour	Sampler: for For
Title: (421957	Title: 2 bs surevia draw
Facility: Lowell Regional Wastewater Utilities	Title: 0 ps - super control Facility: Lowell Regional Wastewater Utilities
Sampling Method: X Composite	Sampling Method: X Grab
Sample ID:	Sample ID: Merrimack River
Start Date: 7/9/19 Time: 7:00 A	Date Collected: 3/19/3017 5-301
End Date: 7/19/11 Time: 7:00 A	Time Collected:
Sampling Method: Grab (for pH and TRC only	_)
Date Collected:	
Time Collected:	
Sample Type: Prechlorinated	
X Dechlorinated	
Unchlorinated Chlorinated	
8 	
Effluent Sampling Location and Procedures: Plant outfall after	r dechlorination. 24 hr. composite.
	
,	
Descriving Water Compling Leastion and Dressdayers Marrimon	al Divar unatroom of the mant dischause at the Hunts Fell Duides
Receiving Water Sampling Location and Procedures: Merrima (Rt.38)	ck River upstream of the plant discharge at the Hunts Fall Bridge,
(Kt.36)	
Requested Analysis: X Chronic and modified acute	Received
requested renarysiss A solution and mounted acute	ON ICE
Sample	Shipment
Method of Shipment: New England Testing Labs	
Relinquished By: Date	: 7-10-19 Time: //= 3 >
Received By: Date Date	: 7/10/18 Time: 1/30
Relinquished By: Date Date	: 7/10/18 Time: 15/5
Received By: Date	7-10-15 Time: 1515
Relinquished By: Date	:71015 Time: 1615
Received By: Date	: 1/10/19 Time: 1615
FOR NEF	USE ONLY
	accurate temperature upon receipt to the NEB laboratory *
Temperature of Effluent Upon Receipt at Lab: 67 °C	Temperature of Receiving Water Upon Receipt at Lab: 6 °C
Effluent COC# $\frac{C39 - 2609}{}$	Receiving Water COC# $\frac{C39 - 2610}{}$

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY, 77 BATSON DRIVE, MANCHESTER CT 06042

NEW ENGLAND BIOASSAY CHAIN-OF-CUSTODY			
EFFLUENT Semple Set #3	RECEIVING WATER		
Sampler: 510 Box Majok	Sampler: Acron Fox		
Title: Chry 57	Title: Ops Supernt		
Facility: Lowell Regional Wastewater Utilities	Facility: Lowell Regional Wastewater Utilities		
-			
Sampling Method: X Composite	Sampling Method: X Grab		
Sample ID:	Sample ID: Merrimack River		
Start Date: 7/1/19 Time: 7-00/4	Date Collected: 7/12/19		
End Date: 7/1/ Time: 7:001	Time Collected:		
Sampling Method: Grab (for pH and TRC only)			
Date Collected:			
Time Collected:			
	Received		
Sample Type: X Prechlorinated Dechlorinated	ON ICE		
Unchlorinated			
Chlorinated			
Effluent Sampling Location and Procedures: Plant outfall after de	ahlarinatian 24 ha aarraasita		
Ethicht Sampling Location and Procedures. Frank Outlan after to	emormation. 24 m. composite.		
*			
Receiving Water Sampling Location and Procedures: Merrimack	River upstream of the plant discharge at the Hunts Fall Bridge,		
(Rt.38)			
Requested Analysis: X Chronic and modified acute			
Sample Sh	ripment		
Method of Shipment: New England Testing Labs			
Relinquished By: Date:	7-12-11 Time: 11=30A		
Received By: Date:	7/12/19 Time: 1130		
// //	7/12/19 Time: 15/6		
Received By: Date:	7/12/18 Time: 1515		
Relinquished By: Date:	7 (2) 10 Time: /6/0		
Received By: Date:	7/12/19 Time: 11/10		
Date	Time.		
FOR NEB U	SE ONLY		
* Please return all ice packs NEB has provided to insure acc			
	emperature of Receiving Water Upon Receipt at Lab: 7.0 °C		
Effluent COC# <u>C39-2664</u> Re	eceiving Water COC# <u>C39 - 2Le Lo 5</u>		
	Total India Cook Con		

IF THIS COOLER IS MISPLACED OR THE LABEL IS LOST, PLEASE SHIP TO: KIM WILLS, NEW ENGLAND BIOASSAY, 77 BATSON DRIVE, MANCHESTER CT 06042